skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Thirumuruganathan, Saravanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Accurate selectivity estimation for string predicates is a long-standing research challenge in databases. Supporting pattern matching on strings (such as prefix, substring, and suffix) makes this problem much more challenging, thereby necessitating a dedicated study. Traditional approaches often build pruned summary data structures such as tries followed by selectivity estimation using statistical correlations. However, this produces insufficiently accurate cardinality estimates resulting in the selection of sub-optimal plans by the query optimizer. Recently proposed deep learning based approaches leverage techniques from natural language processing such as embeddings to encode the strings and use it to train a model. While this is an improvement over traditional approaches, there is a large scope for improvement. We propose Astrid, a framework for string selectivity estimation that synthesizes ideas from traditional and deep learning based approaches. We make two complementary contributions. First, we propose an embedding algorithm that is query-type (prefix, substring, and suffix) and selectivity aware. Consider three strings 'ab', 'abc' and 'abd' whose prefix frequencies are 1000, 800 and 100 respectively. Our approach would ensure that the embedding for 'ab' is closer to 'abc' than 'abd'. Second, we describe how neural language models could be used for selectivity estimation. While they work well for prefix queries, their performance for substring queries is sub-optimal. We modify the objective function of the neural language model so that it could be used for estimating selectivities of pattern matching queries. We also propose a novel and efficient algorithm for optimizing the new objective function. We conduct extensive experiments over benchmark datasets and show that our proposed approaches achieve state-of-the-art results. 
    more » « less
  3. Online crowdsourcing platforms have proliferated over the last few years and cover a number of important domains, these platforms include worker-task platforms such as Amazon Mechanical Turk, worker-for hire platforms such as TaskRabbit to specialized platforms with specific tasks such as ridesharing like Uber, Lyft, Ola, etc. An increasing proportion of the human workforce will be employed by these platforms in the near future. The crowdsourcing community has done yeoman’s work in designing effective algorithms for various key components, such as incentive design, task assignment, and quality control. Given the increasing importance of these crowdsourcing platforms, it is now time to design mechanisms so that it is easier to evaluate the effectiveness of these platforms. Specifically, we advocate developing benchmarks for crowdsourcing research. Benchmarks often identify important issues for the community to focus on and improve upon. This has played a key role in the development of research domains as diverse as databases and deep learning. We believe that developing appropriate benchmarks for crowdsourcing will ignite further innovations. However, crowdsourcing – and future of work, in general – is a very diverse field that makes developing benchmarks much more challenging. Substantial effort is needed that spans across developing benchmarks for datasets, metrics, algorithms, platforms, and so on. In this article, we initiate some discussion into this important problem and issue a call-to-arms for the community to work on this important initiative. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)